Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710657

RESUMO

Common in biomacromolecules, kinetically trapped misfolded intermediates are often detrimental to the structures, properties, or functions of proteins or nucleic acids. Nature employs chaperone proteins but not nucleic acids to escort intermediates to correct conformations. Herein, we constructed a Jablonski-like diagram of a mechanochemical cycle in which individual DNA hairpins were mechanically unfolded to high-energy states, misfolded into kinetically trapped states, and catalytically relaxed back to ground-state hairpins by a DNA chaperone. The capacity of catalytic relaxation was demonstrated in a 1D DNA hairpin array mimicking nanoassembled materials. At ≥1 µM, the diffusive (or self-walking) DNA chaperone converted the entire array of misfolded intermediates to correct conformation in less than 15 s, which is essential to rapidly prepare homogeneous nanoassemblies. Such an efficient self-walking amplification increases the signal-to-noise ratio, facilitating catalytic relaxation to recognize a 1 fM DNA chaperone in 10 min, a detection limit comparable to the best biosensing strategies.

2.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870477

RESUMO

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Assuntos
Proteínas de Ligação a DNA , Ácido Fítico , Animais , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Autoantígeno Ku/metabolismo , Mamíferos/genética , Humanos
3.
J Am Chem Soc ; 145(31): 17143-17150, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494702

RESUMO

Interaction between peptides and nucleic acids is a ubiquitous process that drives many cellular functions, such as replications, transcriptions, and translations. Recently, this interaction has been found in liquid-liquid phase separation (LLPS), a process responsible for the formation of newly discovered membraneless organelles with a variety of biological functions inside cells. In this work, we studied the molecular interaction between the poly-l-lysine (PLL) peptide and nucleic acids during the early stage of an LLPS process at the single-molecule level using optical tweezers. By monitoring the mechanical tension of individual nucleic acid templates upon PLL addition, we revealed a multistage LLPS process mediated by the long-range interactions between nucleic acids and polyelectrolytes. By varying different types (ssDNA, ssRNA, and dsDNA) and sequences (A-, T-, G-, or U-rich) of nucleic acids, we pieced together transition diagrams of the PLL-nucleic acid condensates from which we concluded that the propensity to form rigid nucleic acid-PLL complexes reduces the condensate formation during the LLPS process. We anticipate that these results are instrumental in understanding the transition mechanism of LLPS condensates, which allows new strategies to interfere with the biological functions of LLPS condensates inside cells.


Assuntos
Núcleo Celular , RNA , Polieletrólitos , Transição de Fase
4.
Nat Commun ; 13(1): 7099, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402816

RESUMO

DNA polymerase epsilon (PolE) in an enzyme essential for DNA replication. Deficiencies and mutations in PolE cause severe developmental abnormalities and cancers. Paradoxically, the catalytic domain of yeast PolE catalytic subunit is dispensable for survival, and its non-catalytic essential function is linked with replicative helicase (CMG) assembly. Less is known about the PolE role in replication initiation in human cells. Here we use an auxin-inducible degron system to study the effect of POLE1 depletion on replication initiation in U2OS cells. POLE1-depleted cells were able to assemble CMG helicase and initiate DNA synthesis that failed shortly after. Expression of POLE1 non-catalytic domain rescued this defect resulting in slow, but continuous DNA synthesis. We propose a model where in human U2OS cells POLE1/POLE2 are dispensable for CMG assembly, but essential during later steps of replication initiation. Our study provides some insights into the role of PolE in replication initiation in human cells.


Assuntos
Proteínas de Ciclo Celular , DNA Polimerase II , Humanos , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA/metabolismo
5.
Biomacromolecules ; 23(11): 4795-4803, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36322676

RESUMO

Single-molecule methods offer high sensitivities with precisions superior to bulk assays. However, these methods are low in throughput and cannot repetitively interrogate the same cluster of molecular units. In this work, we investigate a tandem array of G-quadruplexes on a single-molecule DNA template with a throughput of at least two orders of magnitude higher than single-molecule force spectroscopy. During mechanical unfolding by optical tweezers, the array of G-quadruplexes experiences identical force, temperature, and ionic conditions, which not only reduce environmental noise but also render unfolding transitions indistinguishable among individual G-quadruplexes. The resultant ensemble behaviors are analyzed by scanning force diagrams, which reveals accurate F1/2 values, where 50% of G-quadruplexes are unfolded. Independent of the number of G-quadruplexes (n > 15) contained in a cluster, F1/2 can effectively evaluate G-quadruplex ligands in a new method called differential scanning forcemetry. When the same G-quadruplex cluster is subject to a series of constant forces in force-jump experiments, unfolding rate constants of G-quadruplexes can be effectively evaluated as a function of force. The high precision demonstrated in all of these measurements reflects the power of repetitive sampling on the same cluster of single-molecule entities under identical conditions. Since biomolecules such as DNA, RNA, and proteins can be conveniently incorporated in a tandem array, we anticipate that this ensemble assay on single-molecule entities (EASE) provides a generic means of ensemble force spectroscopy to amalgamate the accuracy of ensemble measurements with the precision of single-molecule methods.


Assuntos
Quadruplex G , Análise Espectral , Pinças Ópticas , Nanotecnologia , DNA/química
6.
J Phys Chem Lett ; 13(37): 8692-8698, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36094396

RESUMO

Cellular environments such as nanoconfinement and molecular crowding can change biomolecular properties. However, in nanoconfinement, it is extremely challenging to investigate effects of crowding cosolutes on macromolecules. By using optical tweezers, here, we elucidated the effects of hexaethylene glycol (HEG) on the mechanical stability of a telomeric G-quadruplex (GQ) in a zeptoliter DNA origami reactor (zepto-reactor). When HEG molecules were introduced in the GQ-containing zepto-reactor at different positions, we found that the GQ species split into two equilibrated populations, reflecting diverse effects of the oligoethylene glycol on the GQ via either a long-range dehydration effect or direct interactions. When the number of HEG molecules was increased, the stability of the GQ unexpectedly decreased, suggesting that the direct destabilizing interaction between the GQ and HEG is dominating over the long-range stabilizing dehydration effects of the HEG in hydrophilic nanocavities. These findings indicate that a nanoconfined environment can alter regular effects of cosolutes on biomacromolecules.


Assuntos
Quadruplex G , DNA , Desidratação , Etilenoglicóis , Humanos , Telômero
7.
Angew Chem Int Ed Engl ; 61(23): e202113156, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35320624

RESUMO

In Tau protein condensates formed by the Liquid-Liquid Phase Separation (LLPS) process, liquid-to-solid transitions lead to the formation of fibrils implicated in Alzheimer's disease. Here, by tracking two contacting Tau-rich droplets using a simple and nonintrusive video microscopy, we found that the halftime of the liquid-to-solid transition in the Tau condensate is affected by the Hofmeister series according to the solvation energy of anions. After dissecting functional groups of physiologically relevant small molecules using a multivariate approach, we found that charged groups facilitate the liquid-to-solid transition in a manner similar to the Hofmeister effect, whereas hydrophobic alkyl chains and aromatic rings inhibit the transition. Our results not only elucidate the driving force of the liquid-to-solid transition in Tau condensates, but also provide guidelines to design small molecules to modulate this important transition for many biological functions for the first time.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas tau/metabolismo
8.
Nucleic Acids Res ; 50(2): 697-703, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35037040

RESUMO

Both ligand binding and nanocavity can increase the stability of a biomolecular structure. Using mechanical unfolding in optical tweezers, here we found that a DNA origami nanobowl drastically increased the stability of a human telomeric G-quadruplex bound with a pyridostatin (PDS) ligand. Such a stability change is equivalent to >4 orders of magnitude increase (upper limit) in binding affinity (Kd: 490 nM → 10 pM (lower limit)). Since confined space can assist the binding through a proximity effect between the ligand-receptor pair and a nanoconfinement effect that is mediated by water molecules, we named such a binding as mechanochemical binding. After minimizing the proximity effect by using PDS that can enter or leave the DNA nanobowl freely, we attributed the increased affinity to the nanoconfinement effect (22%) and the proximity effect (78%). This represents the first quantification to dissect the effects of proximity and nanoconfinement on binding events in nanocavities. We anticipate these DNA nanoassemblies can deliver both chemical (i.e. ligand) and mechanical (i.e. nanocavity) milieus to facilitate robust mechanochemical binding in various biological systems.


Assuntos
DNA/química , Ligantes , Modelos Teóricos , Nanoestruturas/química , Quadruplex G , Humanos , Modelos Moleculares , Conformação Molecular
9.
Chem Sci ; 12(30): 10159-10164, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34377405

RESUMO

Mechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s-1 shear rate. We found that the larger the molecules, the higher the exerted shear forces. This shear force approach revealed affinity between ligands and i-motif structures. It also demonstrated a mechano-click reaction in which a Cu(i) catalyzed azide-alkyne cycloaddition was modulated by shear force. We anticipate that this ensemble force spectroscopy method can investigate intra- and inter-molecular interactions with the throughput, accuracy, and robustness unparalleled to those of SMFS methods.

10.
Bioconjug Chem ; 32(2): 311-317, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33475341

RESUMO

Cell motions such as migration and change in cellular morphology are essential activities for multicellular organism in response to environmental stimuli. These activities are a result of coordinated clustering/declustering of integrin molecules at the cell membrane. Here, we prepared DNA origami nanosprings to modulate cell motions by targeting the clustering of integrin molecules. Each nanospring was modified with arginyl-glycyl-aspartic acid (RGD) domains with a spacing such that when the nanospring is coiled, the RGD ligands trigger the clustering of integrin molecules, which changes cell motions. The coiling or uncoiling of the nanospring is controlled, respectively, by the formation or dissolution of an i-motif structure between neighboring piers in the DNA origami nanodevice. At slightly acidic pH (<6.5), the folding of the i-motif leads to the coiling of the nanospring, which inhibits the motion of HeLa cells. At neutrality (pH 7.4), the unfolding of the i-motif allows cells to resume mechanical movement as the nanospring becomes uncoiled. We anticipate that this pH-responsive DNA nanoassembly is valuable to inhibit the migration of metastatic cancer cells in acidic extracellular environment. Such a chemo-mechanical modulation provides a new mechanism for cells to mechanically respond to endogenous chemical cues.


Assuntos
Movimento Celular , DNA/química , Nanoestruturas/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio
11.
Anal Chem ; 92(19): 13126-13133, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32829637

RESUMO

While single-molecule sensing has offered ultimate mass sensitivity at the precision of individual molecules, it requires a longer time to detect analytes at lower concentrations when analyte binding to single-molecule probes becomes diffusion-limited. Here, we solved this accuracy problem in the concentration sensitivity determination by using single-molecule DNA homopolymers, in which up to 473 identical sensing elements (DNA hairpins) were introduced by rolling circle amplification. Surprisingly, the DNA homopolymers containing as few as 10 tandem hairpins displayed ensemble unfolding/refolding transitions, which were exploited to recognize microRNAs (miRNAs) that populated unfolded hairpins. Within 20 min, the femtomolar detection limit for miRNAs was observed, 6 orders of magnitude better than standalone hairpins. By incorporating different hairpin probes in an alternating DNA copolymer, multiplex recognition of different miRNAs was demonstrated. These DNA co-polymers represent new materials for innovative sensing strategies that combine the single-molecule precision with the accuracy of ensemble assays to determine concentration sensitivities.


Assuntos
DNA/química , MicroRNAs/sangue , Polímeros/química , Técnicas Biossensoriais , Humanos , Técnicas Analíticas Microfluídicas
12.
Nat Mater ; 19(9): 1012-1018, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661383

RESUMO

The diversity of DNA duplex structures is limited by a binary pair of hydrogen-bonded motifs. Here we show that poly(thymine) self-associates into antiparallel, right-handed duplexes in the presence of melamine, a small molecule that presents a triplicate set of the hydrogen-bonding face of adenine. X-ray crystallography shows that in the complex two poly(thymine) strands wrap around a helical column of melamine, which hydrogen bonds to thymine residues on two of its three faces. The mechanical strength of the thymine-melamine-thymine triplet surpasses that of adenine-thymine base pairs, which enables a sensitive detection of melamine at 3 pM. The poly(thymine)-melamine duplex is orthogonal to native DNA base pairing and can undergo strand displacement without the need for overhangs. Its incorporation into two-dimensional grids and hybrid DNA-small-molecule polymers highlights the poly(thymine)-melamine duplex as an additional tool for DNA nanotechnology.


Assuntos
DNA/química , Nanoestruturas/química , Timina/química , Triazinas/química , Ligação de Hidrogênio
13.
J Am Chem Soc ; 142(22): 10042-10049, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32383870

RESUMO

For proteins and DNA secondary structures such as G-quadruplexes and i-motifs, nanoconfinement can facilitate their folding and increase structural stabilities. However, the properties of the physiologically prevalent B-DNA duplex have not been elucidated inside the nanocavity. Using a 17-bp DNA duplex in the form of a hairpin stem, here, we probed folding and unfolding transitions of the hairpin DNA duplex inside a DNA origami nanocavity. Compared to the free solution, the DNA hairpin inside the nanocage with a 15 × 15 nm cross section showed a drastic decrease in mechanical (20 → 9 pN) and thermodynamic (25 → 6 kcal/mol) stabilities. Free energy profiles revealed that the activation energy of unzipping the hairpin DNA duplex decreased dramatically (28 → 8 kcal/mol), whereas the transition state moved closer to the unfolded state inside the nanocage. All of these indicate that nanoconfinement weakens the stability of the hairpin DNA duplex to an unexpected extent. In a DNA hairpin made of a stem that contains complementary telomeric G-quadruplex (GQ) and i-motif (iM) forming sequences, formation of the Hoogsteen base pairs underlining the GQ or iM is preferred over the Watson-Crick base pairs in the DNA hairpin. These results shed light on the behavior of DNA in nanochannels, nanopores, or nanopockets of various natural or synthetic machineries. It also elucidates an alternative pathway to populate noncanonical DNA over B-DNA in the cellular environment where the nanocavity is abundant.


Assuntos
DNA/química , Nanopartículas/química , Quadruplex G , Conformação de Ácido Nucleico
14.
Methods Mol Biol ; 2027: 171-180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309481

RESUMO

Single-molecule techniques such as fluorescence-based methods offer superior sensitivity in biosensing. By direct coupling of analyte recognition and signal amplification, a new sensing strategy, single-molecule mechanochemical sensing, has demonstrated high signal-to-noise ratio in the detection of chemicals and biochemicals. However, parallel sensing is limited. In this strategy, DNA origami nanoassemblies with different sensing probes are used as templates for multiplexing tasks. Assisted by the mechanochemical reporting units, these templates are capable of simultaneous detection of biological samples such as platelet-derived growth factor (PDGF) and DNA fragments in microfluidic channels. The origami-based strategy therefore increases multitasking compatibility of the mechanochemical sensing.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/química , Dispositivos Lab-On-A-Chip , Nanoestruturas/química , Imagem Individual de Molécula/instrumentação , Técnicas Biossensoriais/métodos , Fenômenos Mecânicos , Conformação de Ácido Nucleico , Fator de Crescimento Derivado de Plaquetas/análise , Imagem Individual de Molécula/métodos
15.
Angew Chem Int Ed Engl ; 58(3): 877-881, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30476359

RESUMO

Mechanical anisotropy is an essential property for biomolecules to assume structural and functional roles in mechanobiology. However, there is insufficient information on the mechanical anisotropy of ligand-biomolecule complexes. Herein, we investigated the mechanical property of individual human telomeric G-quadruplexes bound to telomestatin, using optical tweezers. Stacking of the ligand to the G-tetrad planes changes the conformation of the G-quadruplex, which resembles a balloon squeezed in certain directions. Such a squeezed balloon effect strengthens the G-tetrad planes, but dislocates and weakens the loops in the G-quadruplex upon ligand binding. These dynamic interactions indicate that the binding between the ligand and G-quadruplex follows the induced-fit model. We anticipate that the altered mechanical anisotropy of the ligand-G-quadruplex complex can add additional level of regulations on the motor enzymes that process DNA or RNA molecules.


Assuntos
Quadruplex G/efeitos dos fármacos , Oxazóis/química , Oxazóis/farmacologia , Anisotropia , Fenômenos Biomecânicos , Humanos , Modelos Moleculares
16.
Proc Natl Acad Sci U S A ; 115(38): 9539-9544, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181280

RESUMO

Due to the small size of a nanoconfinement, the property of water contained inside is rather challenging to probe. Herein, we measured the amount of water molecules released during the folding of individual G-quadruplex and i-motif structures, from which water activities are estimated in the DNA nanocages prepared by 5 × 5 to 7 × 7 helix bundles (cross-sections, 9 × 9 to 15 × 15 nm). We found water activities decrease with reducing cage size. In the 9 × 9-nm cage, water activity was reduced beyond the reach of regular cosolutes such as polyethylene glycol (PEG). With this set of nanocages, we were able to retrieve the change in water molecules throughout the folding trajectory of G-quadruplex or i-motif. We found that water molecules absorbed from the unfolded to the transition states are much fewer than those lost from the transition to the folded states. The overall loss of water therefore drives the folding of G-quadruplex or i-motif in nanocages with reduced water activities.


Assuntos
DNA/química , Quadruplex G , Motivos de Nucleotídeos , Água/química , Modelos Químicos , Nanoestruturas/química , Polietilenoglicóis/química
17.
Anal Chem ; 90(5): 3205-3210, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29400441

RESUMO

Concentration jumps for kinetics measurement remain a challenge for single-molecule techniques, which have demonstrated superior signal-to-noise levels compared to ensemble average approaches. Currently, all concentration jumps use mixing strategies. Here, we report a simple and drastically different jump strategy by rapid transportation of molecules between two side-by-side laminar streams in 80 ms. This allowed us to measure the lifetime of bioactive DNA i-motif structures at physiological pH without force. We placed a human telomeric i-motif inside a DNA hairpin-based mechanical reporter. Since the folded or unfolded state of the hairpin correlates with that of the i-motif, by recording hairpin transitions, a half-life of ∼3 s was found for the DNA i-motif at neutral pH without force. Such a lifetime is sufficient for i-motif to interact with proteins to modulate cellular processes. We anticipate this concentration jump offers a generic platform to investigate single-molecule kinetics.


Assuntos
DNA/química , Microfluídica/métodos , DNA/genética , Humanos , Concentração de Íons de Hidrogênio , Sequências Repetidas Invertidas , Cinética , Conformação de Ácido Nucleico , Motivos de Nucleotídeos
18.
Anal Chem ; 90(3): 1718-1724, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29285923

RESUMO

Due to the fast diffusion, small molecules such as hydronium ions (H3O+) are expected to be homogeneously distributed, even close to the site-of-origin. Given the importance of H3O+ in numerous processes, it is surprising that H3O+ concentration ([H3O+]) has yet to be profiled near its generation site with nanometer resolution. Here, we innovated a single-molecule method to probe [H3O+] in nanometer proximity of individual alkaline phosphatases. We designed a mechanophore with cytosine (C)-C mismatch pairs in a DNA hairpin. Binding of H3O+ to these C-C pairs changes mechanical properties, such as stability and transition distance, of the mechanophore. These changes are recorded in optical tweezers and analyzed in a multivariate fashion to reduce the stochastic noise of individual mechanophores. With this method, we found [H3O+] increases in the nanometer vicinity of an active alkaline phosphatase, which supports that the proximity effect is the cause for increased rates in cascade enzymatic reactions.


Assuntos
Fosfatase Alcalina/química , Técnicas Biossensoriais/métodos , DNA/química , Oniocompostos/análise , Pareamento Incorreto de Bases , Técnicas Biossensoriais/instrumentação , DNA/síntese química , DNA/genética , Concentração de Íons de Hidrogênio , Sequências Repetidas Invertidas , Fenômenos Mecânicos , Pinças Ópticas
19.
Nat Nanotechnol ; 12(6): 582-588, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28346457

RESUMO

Molecular simulations suggest that the stability of a folded macromolecule increases in a confined space due to entropic effects. However, due to the interactions between the confined molecular structure and the walls of the container, clear-cut experimental evidence for this prediction is lacking. Here, using DNA origami nanocages, we show the pure effect of confined space on the property of individual human telomeric DNA G-quadruplexes. We induce targeted mechanical unfolding of the G-quadruplex while leaving the nanocage unperturbed. We find that the mechanical and thermodynamic stabilities of the G-quadruplex inside the nanocage increase with decreasing cage size. Compared to the case of diluted or molecularly crowded buffer solutions, the G-quadruplex inside the nanocage is significantly more stable, showing a 100 times faster folding rate. Our findings suggest the possibility of co-replicational or co-transcriptional folding of G-quadruplex inside the polymerase machinery in cells.


Assuntos
DNA/química , Quadruplex G , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...